Blowup of Solutions to the Compressible Euler-Poisson and Ideal MHD Systems
نویسندگان
چکیده
منابع مشابه
Perturbational blowup solutions to the compressible Euler equations with damping
BACKGROUND The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. METHOD In this...
متن کاملBlowup Phenomena for the Compressible Euler and Euler-Poisson Equations with Initial Functional Conditions
We study, in the radial symmetric case, the finite time life span of the compressible Euler or Euler-Poisson equations in R (N) . For time t ≥ 0, we can define a functional H(t) associated with the solution of the equations and some testing function f. When the pressure function P of the governing equations is of the form P = Kρ (γ) , where ρ is the density function, K is a constant, and γ > 1,...
متن کاملBlowup Phenomenon of Solutions for the IBVP of the Compressible Euler Equations in Spherical Symmetry
The blowup phenomenon of solutions is investigated for the initial-boundary value problem (IBVP) of the N-dimensional Euler equations with spherical symmetry. We first show that there are only trivial solutions when the velocity is of the form c(t)|x| (α-1) x + b(t)(x/|x|) for any value of α ≠ 1 or any positive integer N ≠ 1. Then, we show that blowup phenomenon occurs when α = N = 1 and [Formu...
متن کاملPeriodic Solutions of Compressible Euler
We have been working on a long term program to construct the first time-periodic solutions of the compressible Euler equations. Our program from the start has been to construct the simplest periodic wave structure, and then tailor the analysis in a rigorous existence proof to the explicit structure. In [26] have found the periodic structure, in [27, 28] we showed that linearized solutions with ...
متن کاملExistence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler-Poisson Equations
We prove existence of rotating star solutions which are steady-state solutions of the compressible isentropic Euler-Poisson (EP) equations in 3 spatial dimensions, with prescribed angular momentum and total mass. This problem can be formulated as a variational problem of finding a minimizer of an energy functional in a broader class of functions having less symmetry than those functions conside...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2020
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2020/7656534